List of Tests to be Completed by December

Functionalities	Tests
Receive Signal	 Verify distance to receive signal
	 Simulate signal and verify it can be picked up by device, compare to signal
	analyzer
	 Measure level of signal received from source at know distances
	 Ensure bandwidth of signal received is wide enough to get accurate reading
FFT	 Test what size 'buckets' work best for producing a consistent output
	 Test how long the FFT and processing takes before returning data
	 Test and compare different SDRs and processors as needed to determine
	which pair/set works and what are key features to focus on
	 What type of resolution of our signal can be calculated
Transfer data	 Verify data input as fault is processed and results in known output
	 Test how storage works, make sure to update or clear data after
	uploaded/transferred to PC/server for mapping
	Do not overwrite valuable data
GPS	 Test to make sure we can read the coordinates of GPS device
	 Verify I&Q data are accurate by comparing with other devices or know
	coordinate points that are known
	 Test the processing time and make sure we can output or attach GPS data
	onto our other data
	 Calibrate GPS movement while driving to ensure more accurate GPS data is
	calculated
Map Data	 Test precision of heat map compared simulated location of fault
	 Test intensity levels plotted vs data input
	 Test multiple uploads and over various spacing of time

Test to Perform for 5 Functionalities:

Kenneth Kleinsmith Ian Furniss 10/24/18

Risk Areas, Consequences, and Contingencies:

<u>Nisk Areas, consequences, and contingencies.</u>			
Area of Risk	Consequences	Contingencies	
Antenna does	The reception and analysis of the	We will be testing a variety of antennas as well as	
not receive	arcing power line signal is the	testing various frequencies to figure out what is	
signal at	backbone to our project. Without	the best frequency (or frequencies) to look for our	
desired ranges	detecting the signal effectively, our	signal.	
	project is kaput.		
SDR does not	If we cannot keep our calculations	By testing the processing time, by purchasing a	
process data	to a timely manner, our data once	decent SDR, we can reduce the calculation time.	
as fast as	finished may be unusable due to	Additionally, we are considering adding a MPU or	
needed	wait time, data loss, or add larger	MCU to perform the 'heavy lifting' calculations to	
	error to our final data results.	speed up the calculation time.	
SDR does not	If we cannot read in the data from	We have considered buying an adaptor if needed	
interface and	the SDR, there is no final-result	or could consequently build one if we cannot find	
output data as	data. We need to be able to obtain	an adequate solution. Additional programming	
desired	the data from the SDR and so that	could also be done to modify the output data so	
	we can perform further	that we can obtain the formatting we desire.	
	calculations on the results.		
GPS does not	Lots of GPS units output data in	We can purchase alternate GPS devices to obtain	
output data in	various ways, not having the data	the desired output. Also, we can purchase	
format or at	output as we need would throw off	different levels of speed for which the output is	
speed required	the location that the fault is	pushed from the device.	
for accuracy	detected or not provide valid data.		
GPS does not	If our GPS does not work with our	By purchasing an alternate GPS or building an	
connect to or	SDR, we would lose functionality in	adaptor so that we can make sure the signal is	
interface with	outputting the heat-map of the	received correctly. We may consider writing a	
SDR	results thus removing of the most	small script or change the programming on how	
	important qualities of our device.	the device expects to receive the data.	
Signal is hard	If we cannot extract our signal	To reduce the noise floor, we can take more	
to distinguish	from ambient noise, we will have	sampling buckets (averaging over narrower	
from noise or	not have a clear signal to analyze. If	bands). We can add filters to pre- and post	
other	we cannot determine the	processing to help distinguish between a	
dedicated	difference between our signal and	broadband arcing signal and other broadcasted	
signals (radio)	other broadcasted (on purpose)	signals. Layering a more complicated averaging	
	signals, we will obtain false positive	algorithm can help filter out unwanted data as	
	for faults.	well.	
Output data is	Another key feature is to plot the	By choosing different ways to output and store	
in difficult	detection levels of arcing	the data, we can modify how the initial data is	
format to deal	powerlines on an online map.	output. We may also post process the data before	
with (plot)	Without the user being able to	it is stored if it still isn't in a usable format.	
(P)	view faults, there is not alternative	Though this may add some delay in the time	
	way to view the results from our	between computation and storage, this would not	
	device.	affect the results of our final data.	
		ancer the results of our find data.	

		· · ·
Ensuring data	If we do not store or display the	If our data storage device does not work, we can
is stored and	uploaded correctly, our results of	try to supplement the memory storage capability
uploaded	our fault level (heat map) may	(flash drive or larger SD cards). We can write a
correctly	contain errors or lose valuable data	program that simply adds the data to the map in
	of previously detected faults.	addition to what is there so that we do not lose
		data. By using a cloud system, we do not have
		much worry about our online map data filling up.
		Otherwise we can buy more space or use an
		alternate mapping service.